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Abstract. The interrelation between the giant magnetoelastic response and the superelastic or/and rubber-
like behavior of a martensitic alloy is substantiated. The equivalence principle for the mechanical and
magnetoelastic stresses is formulated and then used for the quantitative theoretical description of the
field-induced deformation of martensite. Two different orientations of the magnetic field with respect to
the crystal axes are considered. The agreement between the theoretical and experimental field dependencies
of the deformation is achieved.

PACS. 81.30.Kf Martensitic transformations – 75.80.+q Magnetomechanical and magnetoelectric effects,
magnetostriction – 75.30.Gw Magnetic anisotropy

1 Introduction

A sufficiently large number of metallic alloys undergoes
a martensitic phase transformation on cooling below a
certain temperature Tms referred to as the martensite
start temperature (see [1–3]). Martensitic transformation
(MT) is characterized by the spontaneous deformation of
the cubic crystal lattice. For the cubic-tetragonal, cubic-
orthorhombic and cubic-rhombohedral MT-s the strains
ε̂M occurring in the temperature range T < Tms typically
are about few percents. The low-temperature phase is a
spatially inhomogeneous state (martensite) formed by dif-
ferent variants (crystallographic domains) of this phase.
The microstructure of martensite in many cases is very
sensitive to mechanical stressing. The martensitic struc-
ture variation under the action of mechanical stresses gives
rise to the physical phenomena, which are interesting for
both fundamental studies and applications. Among these
phenomena the superelasticity, rubber-like behavior and
shape-memory effect are now of common knowledge [4].

Some martensitic alloys are ferromagnetic. Their Curie
temperatures TC may be both higher or lower than
martensite start temperature [5–8]. The Ni–Mn–Ga [9,10],
Fe–Pd [11] and Fe–Pt [12] ferromagnetic alloys are of spe-
cial interest because the substantial change in the marten-
sitic structure of these alloys can be induced not only by
the mechanical stressing but also by the magnetic field ap-
plication. As far as the change in the alloy morphology is
accompanied by deformation, the giant magnetoelastic re-
sponse of the ferromagnetic martensite is observed [9–11].
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Very recently the field-induced strains about 5% have been
reported for Ni–Mn–Ga alloy (see, for example [13]).

Different approaches to the theoretical description of
the ferromagnetic martensite have been elaborated. Some
of the proposed theoretical models [10,11,14] consider the
volume fractions of martensite variants as the thermody-
namical variables in the spirit of the local equilibrium con-
cept (see, for example, [15,16]). These models are focused
on the thermodynamical analysis of the magnetic-field-
induced deformations of martensite without consideration
of the physical interactions causing these deformations.

Another approach to the theoretical study of ferromag-
netic martensite is close to the traditional Landau theory
and is referred to as the phenomenological magnetoelas-
tic model [17–22]. A spin-lattice interaction is explicitly
regarded in this model by the introduction of the ap-
propriate terms into the Landau potential. In this way,
the magnetic anomalies accompanying MT have been de-
scribed [17,19], and the phase diagram of ferromagnetic
martensite has been constructed [18]. Furthermore, the
resemblance between the ordinary mechanical stressing of
the specimen and the stressing caused by the magnetic
field application has been used for the evaluation of mag-
netoelastic response in martensite [19–21]. At the same
time, the dependencies of the field-induced strains on the
magnetic field value ε̂(H) have not been analyzed in the
framework of thermoelastic model.

In this paper the possibility of quantitative description
of ε̂(H) dependencies in the framework of magnetoelastic
model is substantiated. The difference in the experimental
curves obtained in [9] for the different field directions is
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explained. The quantitative agreement between the theo-
retical and experimental curves ε̂(H) is achieved for the
specimens of the almost stoichiometric Ni2MnGa alloy
studied very recently in [22].

2 The equivalence principle
for the magnetoelastic and mechanical
stresses

According to magnetoelastic model [17–20] the Gibbs po-
tential of the biaxially stressed cubic crystal is

G = Fe + Fm + Fme −
1
6

(σ2u2 + σ3u3) , (1)

where

u2 =
√

3 (εxx − εyy) , u3 = 2εzz − εyy − εxx,
σ2 =

√
3 (σxx − σyy) , σ3 = 2σzz − σyy − σxx,

εii and σii are the strain and stress tensors components,
coordinate axes x, y and z are oriented along [100], [010]
and [001] crystallographic directions respectively.

The first term of the sum (1) describes the Helmholtz
free energy of the elastic strains and can be presented in
the form

Fe =
3
2

(C11 + 2C12)u2
1 +

1
6
C′
(
u2

2 + u2
3

)
, (2)

where C11, C12 and C′ = (C11 − C12) /2 are the elastic
moduli of cubic crystal, u1 = (εxx + εyy + εzz) /3. Equa-
tion (2) expresses the ordinary elastic energy of cubic crys-
tal in terms of u1 − u3 variables (see [23]).

The second term in (1) is the free energy of magnetic
subsystem of the crystal. This energy can be expressed as

Fm =
1
2
J (T ) y2(T ) +

1
2
M2(T ) (m ·D ·m)

−mHM(T ), (3)

where the first term is the spin exchange energy, the sec-
ond term is the magnetostatic energy caused by the mag-
netic dipole-dipole interaction and the third term is the
energy of magnetization vector M in the magnetic field
H. The roles of the exchange and magnetostatic energies
in the properties of ferromagnetic martensites is analyzed
in [22,11], respectively. All the energies are expressed in
terms of the dimensionless variables m = M(T )/M(T )
and y(T ) = M(T )/M(0). The terms of the forth and sixth
order in these variables are comparatively small [17] and
therefore disregarded.

The third summand in (1) describes the interrelation
between the magnetization and strains. This interrelation
is caused by the spin-lattice interaction existing in all
solids which include the paramagnetic ions. The energy

of magnetoelastic coupling is conventionally described by
the expression [17,18,22]:

Fme = −δ0y2(T )u1 − δ1
[√

3
(
m2
x −m2

y

)
u2

+
(
2m2

z −m2
y −m2

x

)
u3

]
, (4)

where δ0 and δ1 are the magnetoelastic parameters. The
parameter δ0 is responsible for volume magnetostriction
and δ1 causes the magnetostrictive shear deformation of
the crystal lattice.

The role of magnetoelastic coupling in the properties
of martensitic alloys becomes clear when the formula (1)
is rewritten in the following form:

G = Fe + Fm − δ0y2(T )u1 −
1
6

(
σeff

2 u2 + σeff
3 u3

)
, (5)

where

σeff
2 = σ2 + σme2 , σeff

3 = σ3 + σme3 ,

σme2 = 6
√

3δ1
(
m2
x −m2

y

)
,

σme3 = 6δ1
(
2m2

z −m2
y −m2

x

)
. (6)

The functions σeff
2 and σeff

3 can be interpreted as the
“effective stresses” [19,20]. These stresses are the sums
of the mechanical stresses σ2, σ3 and magnetoelastic ones
σme2 , σme3 . The former are related to the external forces ap-
plied to the specimen, the latter depend on the direction
of the unit magnetic vector m and therefore, a rotation
of the magnetic vector under the action of the magnetic
field results in the additional stressing of the alloy. The
field-induced stresses are

σ2,3(H) = σme2,3 (H)− σme2,3 (0). (7)

For the parent phase the field-induced strains can be
explicitly expressed through the stresses (7). The condi-
tions ∂(Fe+Fme)/∂u2,3 = 0 result in the ordinary stress–
strain relationships of the linear elasticity theory

u2,3(H) = σ2,3(H)/2C′, (8)

(for more detail see [17]). Similarity between the mechan-
ical and field-induced stresses follows immediately from
the expressions (5) and (6): Gibbs potential involves me-
chanical and magnetoelastic stress tensors in combination
σ̂eff = σ̂+ σ̂me(0)+ σ̂(H), and therefore, the results of its
minimization will be the same for σ̂eff = σ̂me(0) + σ̂(H)
and σ̂eff = σ̂me(0) + σ̂. (The caret on the letter sym-
bolize the totality of tensor components). Thus, the field-
induced deformation is equal to the deformation caused
by the mechanical load if the field-induced stress tensor
σ̂(H) is equal to the stress tensor σ̂ induced by the load-
ing of the experimental specimen. This conclusion may be
referred to as the equivalence principle for the mechanical
and magnetoelastic deformation.

A martensitic structure rearrangement accompanying
mechanical stressing of the shape-memory alloys causes
a superelasticity and rubber-like behavior of these alloys.
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It means, that the stiffness coefficient relating the applied
mechanical stress to the resultant deformation of the alloy
is substantially smaller, than C′ modulus measured in the
parent phase well above the MT temperature range. Thus,
for the initial part of the σ − ε curve

ε(σ) ≈ (∂ε/∂σ)0 σ, (9)

where (∂ε/∂σ)0 � 1/C′.
A magnetoelastic response of the spatially inhomoge-

neous martensitic phase cannot be evaluated from the for-
mula (8) because the magnetic field application results
not only in the elastic deformation of the crystal lat-
tice but in the variation of martensite microstructure as
well [9–11,24,25]. In accordance with the equivalence prin-
ciple we can assert that the expression for the field-induced
deformation of martensite is similar to (9), i.e.

ε̂(H) ≈ (∂ε̂/∂σβ) · σβ(H), (10)

where the coefficients (∂ε̂/∂σβ) are of the order of ex-
perimental value (∂ε/∂σ)0 obtained from the ordinary
mechanical tests of the alloy, β = 2, 3. It can be con-
cluded therefore, that the giant magnetoelastic response
of the ferromagnetic martensite is essentially a superelas-
tic or/and rubber-like behavior of the alloy caused by the
field-induced stresses. This conclusion explains a substan-
tial spread in the experimental values of magnetoelastic
response reported by the different authors for the differ-
ent alloys of Ni–Mn–Ga alloy system: the initial slopes and
the general forms of the σ − ε curves describing the su-
perelastic behavior of these alloys strongly depend on their
temperature, composition and preliminary treatment.

3 Field-induced deformations

The field dependence of magnetoelastic stresses can be
found immediately from the phenomenological theory of
ferromagnetic martensite, developed in [17] if the field-
induced deformations (10) are substantially smaller than
the spontaneous strains accompanying a cubic-tetragonal
martensitic transformation of the alloy. According to this
theory, a simple interrelation exists between the magnetic
anisotropy energy of the martensitic phase, magnetoelas-
tic constant δ1 and parameter u0 = 2(ct − at)/at charac-
terizing spontaneous strains (at and ct are the parameters
of tetragonal unit cell).

Tetragonal lattice with the principal symmetry axis
directed closely to [100], [010], or [001] direction of par-
ent phase may be referred to as the x-, y- or z-variant
of tetragonal phase correspondingly. For the periodic kj-
microstructure formed by the alternating k- and j-variants
(Fig. 1) the average spontaneous strains can be approxi-
mated as

ε̄ii = −u0/6, ε̄jj = (2− 3α)u0/6,
ε̄kk = (3α− 1)u0/6, (11)

where α and 1−α are the fractions of tetragonal variants,
k 6= i 6= j.

Fig. 1. The idealized martensitic structure formed by the al-
ternating x- and y-domains of the tetragonal crystal lattice.

The microstructure elements being typical for the large
number of martensites are better visible in the electron
microscope. By contrast, the ferromagnetic domains are
usually observed in the scales available for the optical mi-
croscopy. In the case when the period of the martensite mi-
crostructure is substantially smaller than the dimensions
of ferromagnetic domains, the magnetic vectors m of the
domains are coupled with the average strains (11) rather
than with the strains inherent to the individual marten-
site variants. The substitution of the averaged functions
uM2 =

√
3 (ε̄xx − ε̄yy) , uM3 = 2ε̄zz − ε̄yy − ε̄xx in the for-

mula (4) results in the expression

Fm + Fme =
1
2
J∗ (T ) y2(T ) +A1m

2
i +A2m

2
j

+
1
2
M2(T ) (m ·D ·m)−mHM(T ), (12)

where J∗(T ) = J(T ) − 2δ0u1 is the exchange inte-
gral renormalized by the volume magnetostriction, A1 =
3δ1u0α and A2 = 3δ1u0 (2α− 1) are the magnetic
anisotropy parameters. Magnetic properties of the mi-
crotwinned ferromagnetic martensite characterized by two
anisotropy constants were considered in [17,19]. A good
agreement between the theoretical results and experimen-
tal data obtained in [5,7] was achieved.

Meanwhile, the interaction between the very small
magnetic domains and comparatively large elastic twins
of tetragonal phase was observed very recently in Ni–
Mn–Ga specimens exhibiting a giant magnetoelastic re-
sponse [24,25]. As far as the period of twinning exceeds
in this case the dimensions of the magnetic domains, the
magnetoelastic interaction between the magnetic vector
and the tetragonal martensite variants takes place. The
relevant expression for the energy F ≡ Fm + Fme can
be obtained immediately from the expression (12): the
case α = 0 corresponds to the j-variant of the tetragonal
phase and the expression with α = 1 describes the energy
of k-variant. Moreover, it is worth to express the energy
through the angular variables ϕ, ψ related to the Descartes
coordinates of magnetic vector as

mx = sinψ cosϕ, my = sinψ sinϕ, mz = cosψ

and to analyze the case of the “easy axis” type of magnetic
anisotropy (δ1u0 > 0) actual, for example, for Ni–Mn–Ga
alloys with martensite start temperature Tms < TC . Fur-
ther consideration will be carried out for the ellipsoidal
specimen and the axes of ellipsoid will be aligned with
[1̄10], [11̄0] and [001] directions. In these axes a demagne-
tization matrix is diagonal, its elements will be denoted
as D1, D2, D3, respectively.
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3.1 Deformations induced by the field H‖[001]‖z

For x-variant of tetragonal phase α = 0, j = x and there-
fore

F = M2(T )
[

1
2
D′ cos2 ψ − (a cos2 ϕ (13)

−Dxy sinϕ cosϕ) sin2 ψ

]
−HM(T ) cosψ,

where

a = 3δu0, δ = δ1/M
2(T ),

Dxy = (D1 −D2) /2,

D′ = D3 − (D1 +D2) /2.

A dimensionless constant a describes the magnetic
anisotropy of tetragonal crystal lattice, δ is a dimension-
less magnetoelastic constant, Dxy and D′ are the elements
of demagnetization matrix in the coordinate system as-
sociated with the axes 1, 2, z of ellipsoidal specimen
(see Fig. 2). The extremum conditions ∂F/∂ϕ = 0 and
∂F/∂ψ = 0 result in the equations

cosψ ≡ cosψ[001] =
{
H/HS1, H < HS1,

1, H ≥ HS1,
(14)

where

HS1 = M(T )
[
D′ + 2(a cos2 ϕ1

−Dxy sinϕ1 cosϕ1)
]
, (15)

and

cos2 ϕ1 =
1
2

+
a

2
√
a2 +D2

xy

,

sinϕ1 cosϕ1 = − Dxy

2
√
a2 +D2

xy

·

Equations (14) describe vector m rotation in the fixed
plane ϕ = ϕ1. The field value H = HS1 corresponds to
the magnetic saturation of x-variant. The magnetic vector
of the y-variant of tetragonal phase rotates in the plane
ϕ2 = π/2−ϕ1 and the saturation field is equal to HS1. The
magnetic vector of the z-variant is aligned with applied
magnetic field.

The averaged field-induced stresses can be found for
the case when the volume fractions of x- y- and z-variants
are equal to each other. In this case

〈σ2(H)〉 = 6
√

3δM2(T ) sin2 ψ[001]

× 1
3

(cos 2ϕ1 + cos 2ϕ2) , (16)

〈σ3(H)〉 =
2
3

18δM2(T ) cos2 ψ[001].

As far as cos 2ϕ1 = − cos 2ϕ2, the σ2(H) stress compo-
nents induced in x- and y-variants have the same absolute

Fig. 2. Magnetic vectors rotation in x- and y-variants of
tetragonal phase. A magnetic field is applied to the ellipsoidal
specimen in [110] direction. The numbers in the squires mark
the ellipsoid axes correspondent to the demagnetization fac-
tors D1 and D2.

value but differs in sign and therefore, compensate each
other in average. Moreover, for z-variant of martensite the
field induced stresses are absent in view of the steady vec-
tor m direction. Thus, the experimentally measured giant
magnetoelastic response is caused by the stress component
σ3(H) and the formula for the macroscopic deformation is

〈ε̂(H,T )〉 ≈ 2
3

(∂ε̂/∂σ3) 18δM2(T ) cos2 ψ[001]. (17)

Factor 2/3 occurs in the expression (17) because x-, y-
and z-variants of the martensite are, generally speaking,
equiprobable and only two of them contribute to the field-
induced deformation. Expression (17) predicts strong tem-
perature dependence of the field-induced deformation of
martensite in the temperature ranges close to Tms, TC
or intermartensitic transformations temperatures, because
∂ε̂/∂σ3 and/or M values critically depend on the temper-
ature in these ranges. A possibility of the giant magne-
toelastic response in the two-phase state existing in the
vicinity of martensite start temperature was deduced the-
oretically in [20] and confirmed experimentally in [26].

3.2 Deformations induced by the field H‖[110]

When the magnetic field is oriented in [110] direction the
sum of the magnetic and magnetoelastic energies of x-
variant can be expressed as

F = M2(T )
[

1
2
D′ cos2 ψ (18)

− (a cosϕ−Dxy sinϕ) cosϕ sin2 ψ

]
−
[
HM(T )/

√
2
]

(cosϕ+ sinϕ) sinψ.

The relevant expression for y-variant can be obtained from
(18) by the transposition cosϕ � sinϕ. For z-variant of
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tetragonal phase the formula

F = M2(T )
[

1
2

(D′ − 2a) cos2 ψ (19)

+Dxy sinϕ cosϕ sin2 ψ

]
−
[
HM(T )/

√
2
]

(cosϕ+ sinϕ) sinψ

is valid.
The conditions ∂F/∂ϕ = 0 and ∂F/∂ψ = 0 result in

the following conclusions.
Magnetic field rotates the magnetic vectors m1 and

m2 of x- and y-variants in such a way that

m1z = m2z = 0, m2
1x = m2

2y, m2
1y = m2

2x

for the any value of the magnetic field (Fig. 2). In this
case the field-induced stress component σ3(H) is equal
to zero for both of variants, while the σ2(H) component
inherent in the x-variant differs in sign from one applied
to y-variant, and therefore, these components compensate
each other. Thus, the x- and y-variants do not contribute
to the macroscopic deformation.

The field rotates a magnetic vector m3 of z-variant in
the fixed plane ϕ = π/4. For the specimen with D2 = D3

the equations for the rotation angle ψ are

sinψ ≡ sinψ[110] =
{
H/HS2, H < HS2,

1, H ≥ HS2,
(20)

where the magnetic saturation field HS2 is related to the
magnetic anisotropy parameter a and demagnetization co-
efficients D1, D3 as HS2 = M(T ) (2a+D1 −D3) . As far
as m3x = m3y = const., the component σ2(H) is equal
to zero. At the same time, the magnetic field induces a
nonzero stress component

〈σ3(H)〉 = −1
3

18δM2(T ) sin2 ψ[110]. (21)

Thus, the macroscopic deformation induced by the field
oriented in [110] crystallographic direction is

〈ε̂(H,T )〉 ≈ −1
3

(∂ε̂/∂σ3) 18δM2(T ) sin2 ψ[110]. (22)

The factor 1/3 occurs in the formula (22) because only
one of the martensite variants induces the macroscopic
deformation.

A comparison of the formulas (17) and (22) shows,
that the deformation tensor components induced by the
saturation field H = HS2 applied in [110] direction dif-
fer by the factor −1/2 from the appropriate components
induced by the field H = HS1 applied along [001]. The
difference in the saturation fields values is caused by the
magnetostatic energy and therefore depends on the shape
of the experimental specimen.

4 Computations

Following the works [22,27], we carry out the computation
of magnetization and field-induced deformations with re-
gard to the imperfectness of the crystal lattice. According
to [22] the imperfectness of crystal structure results in the
random dispersion s of u1 variable. The “statistical” value
of this variable is u(s)

1 = u
(0)
1 + s, where u(0)

1 characterizes
the volume change accompanying cubic-tetragonal phase
transformation. The renormalized exchange parameter J∗
introduced in (12) depends on u(s), and hence, Curie tem-
perature found from the equation J∗(T, s) = 0 is also
randomly dispersed:

T
(s)
C = TC + 2sTCδ0/ζ, (23)

where ζ is the factor involved in the relationship
J∗(T, 0) = ζ (T − TC) /TC postulated in the Landau the-
ory.

Physically T (s)
C values are the temperatures of the fer-

romagnetic ordering in the small spatial domains of the
imperfect experimental specimen. For these domains the
magnetization value M(T, s) = M(0)y(T, s) may be found
from the well-known equation of the magnetism theory

y(T, s) = tanh
{
T

(s)
C y(T, s)/T

}
· (24)

When the volume fractions of x- y- and z- variants
are equal to each other the averaged magnetization of
martensitic phase in the field applied in [001] direction
is expressed as〈

M (s)(H,T )
〉

= M(T, s)
[

1
3
∆(s)(H,T ) (25)

+
2
3

cosψ(s)
[001](H,T )

]
,

where the function ∆(s)(H,T ) = (H/D3M) for H < D3M
and ∆(s)(H,T ) = 1 for H ≥ D3M (M = M(T, s)). The
∆(s) function describes the magnetization process in z-
variant of tetragonal lattice. This process is caused by the
displacements of the domain walls separating magnetic
domains with antiparallel magnetic vectors, and hence, is
not associated with the field-induced deformation of the
specimen. Magnetization of cubic phase may be by evalu-
ated from the equation〈

M (s)(H,T )
〉

= M(T, s)∆(s)(H,T ). (26)

The averaged magnetization is described by the for-
mula

〈
M(H,T )

〉
=

+∞∫
−∞

〈
M (s)

〉
f(s)θ(T (s)

C − T )ds, (27)

where

f(s) =
1

s0

√
2π

exp
(
− s2

2s2
0

)
,
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Fig. 3. Theoretical magnetization curves for the martensitic
(T = 265 K) and austenitic (T = 299 K) phases of Ni–Mn–
Ga alloy in the field parallel to [001] direction. Experimental
dependencies obtained in [9] for the same temperatures and
field direction are shown for comparison.

is Gauss distribution, θ(T (s)
C −T ) is a step-wise Heaviside

function.
Now it should be noted that the expressions (17)

and (22) for the field-induced deformation also depend
on the random value s by means of the values M, ψ[001]

and ψ[110]. In such a case the average field-induced defor-
mation should be computed from the formula〈
ε̂(H,T )

〉
= 12δ (∂ε̂/∂σ3)

×

 +∞∫
−∞

M(T, s) cosψ(s)
[001]f(s)θ(T (s)

C − T )ds

2

, (28)

when the magnetic field is aligned with [001], and〈
ε̂(H,T )

〉
= −6δ (∂ε̂/∂σ3)

×

 +∞∫
−∞

M(T, s) sinψ(s)
[[110]f(s)θ(T (s)

C − T )ds

2

, (29)

when the field is parallel to [110] direction.
Figure 3 shows a theoretical magnetization curve com-

puted for the Ni–Mn–Ga specimen experimentally studied
in [9]. We modelled this specimen, being a platelet oriented
normally to [110] direction, by the ellipsoid flattened in
this direction (see Fig. 2). In such a case D1 > D2 = D3

and the D1/D2 ratio may be considered as a fitting pa-
rameter. All other parameters involved in the computa-
tions were taken from [9,17,19,22]. In particular, the value
δ = −23 was accepted for the dimensionless magnetoe-
lastic constant. This value results from the estimation
δ1 = −1.2 × 107 erg/cm3 obtained in [17,19] for the al-
loy with M = 690 G. Figure 3 illustrates a quantitative
agreement between the theoretical results and experimen-
tal data reported in [9].

Figure 4 shows the field-induced deformation of the
specimen in [001] direction computed for H applied in

Fig. 4. Field-induced deformation ε001 computed for two di-
rections of the magnetic field. Upper curve corresponds to the
field applied in [110] direction and the lower one is plotted for
the field aligned with [001]. The experimental points obtained
in [9] are presented for comparison.

[001] and [110] directions. The (∂ε001/∂σ3) value was used
as the fitting parameter, without any changes in the pa-
rameters involved in the previous computations. A semi-
quantitative agreement between the theoretical and exper-
imental dependencies ε001(H) was achieved for the quite
reasonable value (∂ε001/∂σ3)−1 = 59 MPa/percent: the
experimental values dσ/dε ∼ 100 MPa/percent were ob-
tained in the course of mechanical stressing of Ni–Mn–Ga
alloys (see [28] and references therein). The strains shown
in the Figure 4 are caused by both ordinary magnetostric-
tion and comparatively small quasi-reversible rearrange-
ment of martensite variants, because both processes cor-
respond to the quasi-linear stress–strain dependence. The
analysis of field-induced irreversible strains of about 5%
experimentally observed in [13] requires an essential mod-
ification of the theory.

In order to prove that the absence of the rigorous
quantitative agreement between the theoretical and ex-
perimental ε001(H001) dependencies is not of the funda-
mental significance, a theoretical analysis of the exper-
imental data obtained in a very recent work [22] was
carried out. The parallelepiped-shaped specimen with the
dimensions 5 × 7 × 11.5 mm3 was modelled by the el-
lipsoid with the axes A = B = 6 mm, C = 11.5 mm.
The values T = 140 K, M(T ) = 525 G were taken for
computations in accordance with real experimental con-
ditions and previously accepted value δ = −23 was used.
Figure 5 illustrates a quantitative agreement between the
theoretical and experimental ε001(H) curves achieved for
(∂ε001/∂σ3)−1 = 41 MPa/percent.

5 Conclusions

The following conclusions about the physical nature of
a giant magnetoelastic response in the martensites can
be made on the basis of the equivalence principle formu-
lated in this work for the mechanical and magnetoelastic
stresses.

1. The giant magnetoelastic response observed in some
martensitic alloys is a manifestation of the ordinary spin-
lattice interactions (existing in all ferromagnetic solids) in
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Fig. 5. Theoretical (solid line) and experimental (dashed line)
curves describing the ε001 deformation induced by the magnetic
field applied in [001] direction to the specimen studied in [22].

combination with the superelasticity or/and rubber-like
behavior of these alloys.

2. A phenomenological magnetoelastic model of the
ferromagnetic martensite developed in [17,19–21] enables
a computation of the field-induced deformation of marten-
site. The model explains the difference in ε001(H001) and
ε001(H110) dependencies observed in [9].

3. In the case of linear stress–strain dependence the
computed field dependence of the deformation is close to
quadratic; the experimental field dependence of the cy-
cling deformation reported in the recent work [22] agrees
well with the theoretical one at the reasonable value of
stiffness coefficient relating the applied mechanical stress
to the resultant deformation of the alloy (Fig. 5).

The deviations from the quadratic ε̂(H) dependence
observed and intensively discussed in the literature may
be caused by

i) the random spread in the local Curie temperatures,
magnetization values and crystallographic directions in-
herent in the different spatial domains of the specimen
(this statement is illustrated in Fig. 6);

ii) the hardly observable nonlinear character of the
stress–strain dependencies for the very small values of the
applied stresses σ ∼ 1 MPa;

iii) the remaining parent phase inside the austenitic
one;

iv) the nonequilibrium character of the martensitic
phase;

v) the errors of experimental observation of the mag-
netoelastic response of the specimen being in contact with
the data unit.

Factor i) was accounted above. The role of factors ii)
– v) in the giant magnetoelastic response has not been
analyzed till now, but ii), iii) can be considered in future
in the framework of the phenomenological magnetoelastic
model.

The equivalence principle for the mechanical and mag-
netoelastic stresses enables a preliminary estimation of the
expected magnetoelastic response of the alloy from the
stress–strain curves obtained before the performance of
magnetostriction measurements.

It should be emphasized that the proposed theoretical
approach for the description of giant magnetoelastic re-

Fig. 6. The influence of the statistical dispersion of Curie tem-
perature on the field dependence of deformation. The solid
line computed for s0 = 0, (∂ε001/∂σ3)−1 = 59 MPa/percent
demonstrate parabolic dependence while the bold line obtained
for s0 = 0.030, (∂ε001/∂σ3)−1 = 37 MPa/percent exhibits the
deviation from the parabola.

sponse in martensite is justified only in the case when the
field-induced deformation of the alloy ε(H, t) is substan-
tially smaller than the spontaneous deformation ε0 accom-
panying a complete martensitic transformation (ε0 ≈ 5%
for the Ni–Mn–Ga alloys). If this condition is not ob-
served, the magnetic field application results in the strong
irreversible modification of the martensite microstructure
and nonlinear stress–strain dependencies. In this case the
expressions (10) cannot be used, and moreover, the irre-
versible character of the field-induced deformation process
should be accounted.
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